
Exploiting Distribution Skew for Scalable P2P
Text Clustering

Odysseas Papapetrou, Wolf Siberski, Fabian Leitritz, and Wolfgang Nejdl

Research Center L3S, Leibniz Universität Hannover
{papapetrou,siberski,leitritz,nejdl}@l3s.de

Abstract. K-Means clustering is widely used in information retrieval
and data mining. Distributed K-Means variants have already been pro-
posed, but none of the past algorithms scales to large numbers of nodes.
In this work we describe a new P2P algorithm which significantly re-
duces the communication costs involved by exploiting distribution skew,
naturally found in text and other datasets. The algorithm achieves high
clustering quality and requires no synchronization between peers. An
extensive evaluation with up to 100.000 peers shows the algorithm’s ef-
fectiveness and scalability as well as its ability to cope with churn.

1 Introduction

Document clustering is one of the few effective methods for organizing and nav-
igating huge information spaces. Its importance was recognized in information
retrieval, for efficiently improving precision and recall [1]. It also found wide use
for helping users to navigate in large document collections [2] and result sets [3],
and is employed by several modern web search engines as an alternative way of
presenting results.

For a centralized setting, one of the most popular clustering algorithms is K-
Means [4]. K-Means is especially suitable for document clustering [5]. Although
it is inherently parallelizable in a shared-memory architecture [6], distributed
computation is difficult. As the number of documents and clusters grows, com-
munications costs become too high (see Section 2).

To overcome this problem, we propose a new distributed clustering approach
which approximates K-Means and reduces the network load significantly. We
achieve high quality clustering as well as efficient distributed computation by
exploiting the observation that word frequencies in text collections exhibit a
skewed distribution [7, 8]. This allows us to focus on the most important (top-
α) data dimensions when looking for cluster candidates for a document; we will
consequently name our new algorithm top-α K-Means clustering. With respect to
network topology, we rely on a Distributed Hash Table (DHT) data structure [9].

To validate the efficiency and effectiveness of top-α K-Means clustering, we
perform extensive experiments with up to 100.000 peers. Our evaluation shows
that the new algorithm creates high quality clustering solutions and easily scales
to large networks. It achieves convergence with only a small number of iterations,
and copes well with churn.

Although in this paper we focus on efficient text clustering, the proposed
algorithm is suitable for any kind of high-dimensional data with Zipf [10] dis-
tribution. Especially on the Web, data frequently show this characteristic [11,
12]. For such data, our approach allows scaling up K-Means computation by
just adding more computing nodes. The approach does not only apply to loosely
coupled P2P networks, but also to computing clusters.

In the next section, we give an overview of related work. We present our top-α
K-Means algorithm in Section 3. In Section 4, we describe the experimental setup
and present the results of our extensive evaluation. We close with conclusions
and future work.

2 Related work

K-Means [4], the basis of our work, is one of the most used clustering algorithms
because of its low complexity (linear in the number of objects) and comparably
high clustering quality. Especially for document clustering, Steinbach et al. con-
firmed that K-Means has comparable or better performance than Agglomerative
Hierarchical Clustering algorithms while incurring significantly less cost [5].

The basic K-Means algorithm can be summarized as follows: (1) Select k
random starting points as initial centroids for the k clusters (2) Assign each
document to the cluster with the nearest centroid (3) Recompute the centroids
of each cluster as mean of all assigned documents (4) Repeat steps 2-3 until a
stopping criterion is met, e.g., no documents change clusters anymore.
Parallelized K-Means: Dhillon et al. [13] describe an adaptation of K-Means
for distributed memory multiprocessors. The centroid information is distributed
to all processor nodes. The nodes then asynchronously assign the documents
and compute new local centroids. Finally, each node broadcasts its new local
centroids to all other nodes, and the nodes merge them to new global centroids.
A very similar approach is presented in [14]. Although these algorithms efficiently
parallelize the K-Means computation, they are restricted to a small number of
nodes. In [13], when using more than 8 processors any added computing power
is nearly completely used up by increased messaging costs. [14] reported only
an experiment with two nodes. These algorithms fail to scale to large numbers
of nodes because they require broadcasting intermediate results to all network
nodes with a communication complexity of O(n2) for n nodes.
P2P K-Means: Based on Dhillon’s work [13], Eisenhardt et al. proposed one
of the first P2P clustering algorithms [15]. Their algorithm computes K-Means
by using the PROBE/ECHO algorithmto broadcast centroid information to
all connected peers. Similar to the parallel shared-nothing algorithms, this ap-
proach suffers from limited scalability due to the need of broadcasting. Hsiao
and King [16] are the first employing a DHT for clustering. They recognize that
indexing all terms in the DHT is too expensive. Therefore, only a small number
of manually selected terms is indexed. This requires extensive human interaction,
and the network cannot dynamically adapt to new documents and topics.

Hammouda and Kamel [17] use a hierarchical topology for the coordination
of K-Means computation. Peers on the lowest level form groups and compute
local clustering solutions. For each group, a representative peer joins the next
level, using the group’s centroids as data points. This process is repeated until
the top of the hierarchy, where a single root peer computes the final solution. The
main disadvantage of this algorithm is that the quality decreases significantly
for each aggregation level, as a result of the random grouping of peers. In the re-
ported experiments, top-level F-measure drops to less than 50% of the F-measure
achieved by centralized K-Means. With growing network sizes the quality drops
significantly, reaching less then 20% of the central K-Means quality for 65 nodes.

To avoid the cost of broadcasting, Datta et al. [18] employ a gossiping ap-
proach for distribution of the centroids. Each peer first conducts local K-Means
clustering, and then asks its neighbors for their local centroids. The averages
over these local centroids are used as the new centroids for the next iteration.
With each iteration, the computed centroids improve their approximation for the
global clustering solution. The algorithm terminates when the change between
centroids in two subsequent iterations is lower than a threshold value. Com-
pared to earlier attempts, the algorithm reduces communication requirements
considerably. Evaluations with 10-dimensional synthetic data show an average
misclassification error less than 3% (3.5% in dynamic environments). However,
as we show in our experiments, the algorithm has difficulties scaling to large
P2P networks for high-dimensional data such as documents (see Section 4).

3 Top-α K-Means Distributed Clustering

Top-α K-Means reduces clustering cost and maintains high clustering quality by
focusing on the most frequent terms for each cluster and document. The most
frequent terms contribute more to the similarity measure, the cosine similar-
ity in our case. So top-α K-Means uses these terms for an estimation of the
similarity measure between clusters and documents, and then it fully compares
the documents with only the most promising clusters. Since term occurrences
in documents and clusters follow Zipf distribution, top-α K-Means can make a
good approximation of the final similarity measures by using only very few of
the frequent terms.

3.1 Algorithm Overview

Given a P2P network where peers are structured over a DHT overlay. Each peer
in the network carries a set of documents. We require a clustering algorithm for
clustering all documents from the network to k clusters.

In centralized K-Means, it is affordable to compare each document with each
cluster centroid, to decide on the most suitable cluster. However, as pointed out
in Section 2, in a distributed setting the network costs for these comparisons
become prohibitively high if peers exchange complete centroids and/or docu-
ments. The document assignment process needs to be adapted to reduce these

network costs. Our algorithm exploits the fact that term distribution is highly
skewed. This allows us to pre-select the most relevant centroids based on the
most frequent terms (after stopword removal). Instead of comparing a document
with all centroids, only these few selected centroids are used for full comparison.

As first step we compute an approximation of the centroid similarity by
considering only the most frequent (top-α2) document terms. To limit the error
introduced because of this approximation, we select a few (top-α3) most similar
clusters as candidates. A full cosine similarity computation between document
and centroid is performed only for these candidates, and the document is assigned
to the cluster with the highest cosine similarity.

To determine the cluster candidates, we need efficient access to centroid
statistics by term, i.e., an inverted cluster index. This index is maintained within
a Chord-based DHT, formed by all peers in the network. For each term, an in-
dex entry consists of the list of clusters that have published this term and their
details. In particular, the list holds the cluster id, cluster length, frequency of
the respective term, and the peer that holds the cluster centroid (see the sam-
ple entries on the right-hand side of Fig. 1). Again, we exploit the skewed term
distribution and do not add this information for all the terms in a cluster. In-
stead, a cluster inserts this information into the index only for its most frequent
(top-α1) terms. See Table 1 for an overview of the approximation parameters.

Algorithm 1 Document Assignment
1: //Each peer p repeats the following periodically:
2: for all Document d in p do
3: compute partial cosine similarities with centroids considering only top-α2 terms

of d and top-α1 terms of centroids
4: for top-α3 most similar clusters c do
5: compute full cosine similarity between c and d
6: end for
7: Assign d to cluster c with highest cosine similarity
8: end for

As usual in information retrieval, documents are preprocessed by stemming
and removal of stop-words. The latter is particularly important as we do not
want the top-α term lists to become polluted with stopwords.

Periodic execution: Similar to the centralized K-Means algorithm, cluster-
ing is performed in iterations. For each iteration, top-α K-Means consists of two
independent activities, cluster index maintenance and document assignment. We
describe these activities in detail in the next subsections.

3.2 Cluster Index Maintenance

A core component of our algorithm is the distributed cluster index maintained in
a DHT (see Figure 1). The peer initiates the clustering algorithm by assigning the

P1

P27

P19

P13 P11

P7

P3

P2

DHT Layer

Baseball

P4

P17
PoliticsTennis

Cream

Cluster 2 Length=19284 TF=140 Peer P7

Cluster 7 Length=23212 TF=124 Peer P19

Cluster 4 Length=20175 TF=116 Peer P1

Cluster 9 Length=15313 TF=93 Peer P27

Inverted index for “Cream”

Cluster 1 Length=21404 TF=127 Peer P3

Cluster 5 Length=19246 TF=113 Peer P19

Cluster 4 Length=20175 TF=111 Peer P1

Inverted index for “Politics”

Fig. 1: DHT-based Cluster Inverted Index

α1 Top-most frequent terms per cluster to
publish at DHT

α2 Top-most frequent terms per docu-
ment to lookup at DHT

α3 Top-most relevant clusters according
to partial similarity, to fully compare
with the document

Table 1: Algorithm parameters

maintenance of each cluster centroid to randomly selected peers (see Section 3.4).
We call these peers cluster holders. All cluster holders periodically update the
DHT index with information for their centroid. Because of this periodic nature,
the cluster holders never need to unpublish old data; data which are not refreshed
for a given time period expire and are removed from the DHT.

As already mentioned, a cluster holder does not publish index entries for all
terms occurring in the cluster; only the top-α1 most frequent terms are consid-
ered when submitting entries to the DHT. For these terms, the indexing message
consists of term frequency and IP address of the cluster holder. Complete cluster
centroids never have to be passed to other peers. This saves significant network
resources for high-dimensional data. The total number of messages issued by the
cluster holders to maintain the cluster indices is Msgs ≤ k∗α1∗(log(n)+1). Trans-
fer volume is upper bounded by TransferVol ≤ k∗α1∗(log(n)+1)∗avgTermLen,
where avgTermLen denotes the average term length.

Algorithm 2 Cluster Indexing
1: //Each cluster holder c repeats the following periodically:
2: for top-α1 most frequent terms t in cluster do
3: DHT.insert(t, <ipaddr(c),length(c),TF(t, c)>)
4: end for

Cluster centroids are periodically updated to reflect the current cluster con-
tents. In a centralized environment, centroids would be updated at the end of
every iteration; here, they are recomputed at regular intervals, and the DHT
index is updated accordingly. All cluster holders use the same update interval,
but no synchronization between them is required.

3.3 Document Assignment

As with index maintenance, the assignment of documents to clusters is repeated
periodically. Document assignment is split in two steps: (a) looking up candi-
date clusters in the DHT, and (b) choosing the best of them for assigning the
document.

To cluster one of its documents, the peer first identifies the document’s top-
α2 most frequent terms. For these terms, the peer performs a DHT lookup
and collects the potentially relevant clusters, i.e., clusters that have published
at least one of these terms. A partial cosine similarity is computed between the
document and the potentially relevant clusters, considering only the terms of the
clusters that are retrieved from the DHT and assuming a TF of 0 for all other
terms. The clusters are ordered by this similarity score, and the top-α3 most
similar clusters are selected as candidates. A full cosine similarity comparison
of the candidate cluster centroids with the document is then performed. For
this purpose, the peer sends the document vector to the respective candidate
cluster holders which return the corresponding similarity score. Although this
incurs more computation cost for the peers responsible for holding the clusters,
it saves significant communication costs because document vectors are orders of
magnitude smaller than complete centroid vectors. Finally, the peer submits the
document to the most similar cluster.

For k clusters and n peers, the network cost for clustering a document is
as follows. Performing a DHT lookup on the top-α2 document terms requires
on average α2 ∗ log(n) messages. Comparing the document with the α3 most
promising candidate clusters requires 2 ∗ α3 messages. An additional message is
required for assigning the document to the selected cluster. The total number of
messages for clustering a document is upper bounded by Msgs ≤ α2 ∗ log(n)+2∗
α3 + 1. The respective transfer volume in bytes is approximately TransferVol ≈
α3 ∗docLength+α2 ∗ log(n)∗avgTermLen, where docLength denotes the length
of the document and avgTermLen denotes the average term length. Note that
in contrast to all prior algorithms, number of messages and transfer volume are
not linear to k, but only depend on the approximation parameters α1, α2 and
α3, which are much smaller than k. Our evaluation indicates that for increasing
k, α3 can be kept constant and α1 and α2 need to increase only logarithmically
to maintain the same clustering quality.

3.4 Further Aspects

Bootstrapping and terminating the algorithm: Any peer can initialize the
clustering algorithm by selecting k random peers from the DHT, and making
them cluster holders. Each cluster holder selects a random document from its
collection as initial centroid. No further synchronization is required for newly-
joined peers: they retrieve the value of k from the DHT entry point and start
clustering their documents immediately. With respect to algorithm termination,
typically in P2P systems the document collection held by the peers continu-
ously changes, because of network churn and individual peer collection updates.
Therefore, we need to run the clustering algorithm continuously if the goal is to
always have a high-quality document clustering available.

Load Balancing: For load-balancing purposes, the responsibility of keeping
a cluster may need to be split between two or more peers. Peers randomly select
one of these peers as cluster holder when assigning a document. Coordination
between several cluster holders only occurs for submission of centroid updates to

the DHT. Similar to [13], all cluster holders for a certain cluster exchange their
local centroids and merge this information to compute the global centroid. As
only one centroid needs to be transferred per iteration per cluster, and only a
small constant number of peers is communicating, this does not affect scalability.

Periodic re-clustering and churn: Our approach can adapt to the fre-
quency of updates and churn percentage by adjusting the length of the document
assignment and publishing periods. After each document assignment cycle, peers
check how many of their document assignments have changed. The smaller the
fraction of changes, the longer the interval between updates becomes. Similarly,
each cluster holder compares the current cluster contents with the published ones
and adjusts its republishing interval accordingly. The republishing intervals need
not be equal among all cluster holders; each peer decides on its own interval,
and the expiring time for its terms is adjusted accordingly.

Inverse Document Frequency: Top-α K-Means does not include IDF
scores in similarity computation. Existing proposals for maintenance of IDF val-
ues over P2P networks (e.g. [19]) require a complete term inverted index built
over the DHT. In contrast, top-α K-Means only maintains information for a
small fraction of the terms in the DHT. Indexing all the terms for the purpose of
the IDF computation would introduce a high communication overhead. This is
not justified by the increase in quality. Our experiments showed that the usage
of IDF only increases quality scores by less than 10%. In particular, clustering
100.000 documents from the Reuters RCV1 collection with IDF gave 8% im-
provement on F-Measure compared to the results without IDF (0.439 compared
to 0.406), and 1% improvement on entropy (1.53 compared to 1.54). The same
quality improvement can be achieved with lower costs by adapting the algorithm
approximation parameters.

4 Experimental Evaluation

The objective of our evaluation was twofold. First, we wanted to evaluate the ef-
fectiveness of the generated clustering solution, in both static and dynamic large
P2P networks. Second, we wanted to determine the efficiency of the algorithm
regarding network costs.

We evaluated top-α K-Means by comparing it to the following algorithms:

Basic distributed K-Means: This distributed K-Means implementation ac-
curately simulates the centralized K-Means, thus it achieves exactly the same
quality as its centralized counterpart. First, each cluster centroid is assigned
to a peer (cluster holders). The addresses of all the cluster holders are main-
tained in the DHT using the cluster id as a key: {1, 2, . . . k}. Then, a doc-
ument is clustered by: (a) locating all the peers that hold the k cluster
centroids, (b) forwarding the document to each of these peers for compar-
ison, and (c) assigning the document to the cluster with the most similar
centroid. To save messages, the peers cache the cluster holders IP addresses
locally, and only access the DHT when a cluster holder becomes unreachable
because of churn.

Gossiping-based K-means: The gossiping-based K-Means algorithm, pro-
posed by Datta et al. [18], is the state-of-the art in distributed clustering
(cf. Section 2). It is also the only distributed clustering algorithm applicable
to high-dimensional data.

We evaluated the three algorithms by simulating them in large P2P networks
with real documents, and by comparing F-measure and entropy values (see [5]
for a description of the evaluation measures). We also measured the effective-
ness of the two algorithms which had shown acceptable clustering quality: the
basic distributed K-Means and the top-α K-Means algorithm. Effectiveness was
measured with the number of messages and total transfer volume that each al-
gorithm used per clustering iteration. All the network activity was measured,
except of the messages required for connecting peers with the DHT overlay;
these messages were equal in both the compared algorithms.

Document Collections. We evaluated the algorithms on two large document
collections: (a) the Reuters Corpus Volume I (RCV1) dataset [20], which includes
more than 800.000 Reuters articles, and (b) the Reuters-21578 collection, which
includes 21578 Reuters articles. Both collections come with a subject classifi-
cation, which we used as reference to compute F-Measure and entropy. We do
not include the results for the smaller collection in this paper as there was no
significant difference in the outcome. For the RCV1 collection, we filtered out
very short documents (less than 50 words). From the remaining documents we
chose the first 130.000 for our experiments.

4.1 Comparison with Gossiping-based K-Means

Gossiping-based K-Means is currently the most advanced P2P clustering algo-
rithm. The results reported in [18] show good clustering quality for network
sizes up to 1000 peers. However, P2P algorithms based on random networks,
as Gossiping-based K-Means is, are prone to limited scalability. We compared
Gossiping-based K-Means and top-α K-Means to investigate their scalability
with respect to clustering quality.

For this experiment series, we first randomly selected 100.000 of the 130.000
documents of the collection, and distributed them uniformly to N peers. To form
the random network which is assumed by gossiping-based K-Means, each of the
N peers established links to log(N) other peers. For top-α K-Means, the peers
formed a DHT as explained in Section 3. We ran the simulation for different
network sizes N = {500, 1000, 2000, 4000}, as well as for different number of
clustersK = {25, 50, 100}. Each setup was executed 4 times. After each iteration,
we introduced churn by randomly selecting 20% of the peers and replacing them
with an equal number of new peers, which were initialized by using some of the
remaining 30.000 documents. The collections of the removed peers were returned
to the pool of extra documents.

Figure 2 presents averages of the results for varying network sizes, for K = 50
(the results with K = 25 and K = 100 were similar). It shows entropy (lower is
better) and F-measure (higher is better) after 20 iterations, when quality scores

 1.6

 1.8

 2

 2.2

 2.4

 2.6

500 1000 2000 4000

E
nt

ro
py

Number of peers

Gossiping-based
top-α:α1,2=10, α3=6

top-α:α1,2=14, α3=10
top-α:α1,2=18, α3=14

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

500 1000 2000 4000

F
-M

ea
su

re

Number of peers

Gossiping-based
top-α:α1,2=10, α3=6

top-α:α1,2=14, α3=10
top-α:α1,2=18, α3=14

Fig. 2: Gossiping Vs Top-α clustering quality: (a) entropy, (b) F-measure

had stabilized. For the top-α algorithm, we present results for some sample con-
figurations; see next subsection for more details. For small networks, gossiping-
based K-Means achieves a good F-measure. However, when the network grows
larger than 1000, the quality degrades significantly. On the other hand, the effec-
tiveness of top-α K-Means is orthogonal to the network size. For networks larger
than 2000 peers, top-α K-Means outperforms the gossiping-based approach even
for small values of α{1|2|3}. The entropy score of gossiping-based K-Means is
worse than the score of top-α K-Means in all cases.

We repeated the experiment also without churn, with similar results. Both al-
gorithms achieved slightly better F-measure and entropy values, but the relation
between the two did not change.

Summarizing, the experiments show that gossiping-based K-Means has prob-
lems scaling up to large P2P networks. In particular, gossiping-based K-Means
starts failing for network sizes over 1000 peers. In contrast, the effectiveness of
our algorithm is independent of the number of peers.

4.2 Comparison with Basic Distributed K-Means

In the second experiment series, we compared the top-α K-Means with the basic
distributed K-Means. The latter algorithm computes the same clustering solution
as the central variant and serves as quality and efficiency baseline.

We constructed the experiments in the same way as described in Section 4.1,
for network sizes N between 2000 and 100.000 and number of clusters K between
25 and 100. Values for the approximation parameters α{1|2|3} varied between 2
and 22. We do not report all the results here in detail, but focus on N = 100.000
and K = 50. The other results, which were very similar, are only summarized.
Effectiveness: Figure 3 shows how the choice of approximation parameters
influences clustering quality. It plots the average entropy (lower is better) and
F-measure (higher is better) for the two algorithms. For comparison purposes
we include the results for gossiping-based K-Means with 1000 peers in the same
plot.

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 10 12 14 16 18 20 22

E
nt

ro
py

α1, α2 (with α1=α2)

top-α:α3= 6
top-α:α3=10
top-α:α3=18

Gossip:1000peers
Basic Distributed

 0.32

 0.33

 0.34

 0.35

 0.36

 0.37

 0.38

 0.39

 0.4

 0.41

 0.42

 10 12 14 16 18 20 22

F
-M

ea
su

re

α1, α2 (with α1=α2)

top-α:α3= 6
top-α:α3=10
top-α:α3=18

Gossip:1000peers
Basic Distributed

Fig. 3: Top-α Vs Basic Distributed K-Means clustering quality: (a) entropy, (b) F-
measure

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 10 12 14 16 18 20 22

T
ra

ns
fe

r
V

ol
um

e
(M

b)

α1, α2 (with α1=α2)

top-α:α3= 6
top-α:α3=10

top-α:α3=18
Basic Distributed

 1e+007

 1.5e+007

 2e+007

 2.5e+007

 3e+007

 3.5e+007

 4e+007

 4.5e+007

 5e+007

 10 12 14 16 18 20 22

T
ot

al
 m

es
sa

ge
s

α1, α2 (with α1=α2)

top-α:α3= 6
top-α:α3=10

top-α:α3=18
Basic Distributed

Fig. 4: Top-α Vs Basic Distributed K-Means cost:(a) Transfer Volume (b) Total mes-
sages per iteration

Top-α closely approximates the basic distributed K-Means algorithm in terms
of quality. The optimal value for α3 is around 10. Lower values cause a decrease
of quality, and higher values do not have a significant effect. Setting α1 and α2 ≥
14 already yields more than 90% of the effectiveness of original K-Means.

Efficiency: Figure 4 presents the effect of parameter choice on communication
costs. It plots the network transfer volume and number of messages (both includ-
ing DHT lookups) per iteration. Top-α K-Means is always much less expensive
than the basic distributed algorithm. Savings are especially high in terms of
transfer volume. The reason is that the largest part of the transfer volume is
used for sending the documents to the cluster holders for comparison, and top-α
significantly reduces these comparisons. The values of α{1|2|3} also make a sig-
nificant difference on the cost. For low α{1|2|3} values, the cost is low, but the
quality (Figure 3) is also not sufficient. Moderate values for α{1|2|3} (around 10)
give sufficient quality (approximate the optimal by 90%) at less than half the
cost of the basic algorithm. A further increase of the approximation parameters
has only a minor effect in the quality of the algorithm.

Cost-quality tradeoff – the 90% point: We also found which minimal
values of α1, α2 and α3 give solutions with 90% of the quality (measured with
average F-measure over all repetitions) of the original K-Means. Table 2 summa-
rizes the results for 100.000 peers and K = 25, 50, 100. We see that the increase
on the number of clusters only requires a logarithmic increase on the values of
α1, α2, α3 to keep the same quality level.

Configuration Cost Savings

K α1 α2 α3 Messages Transfer volume

25 10 10 6 74% 73%

50 14 14 10 54% 37%

100 18 18 10 34% 2O%

Table 2: 90% point: Cost savings compared to basic K-Means in a 100.000 peer network

Varying the network size has no effects on clustering quality. However, the
network size does affect the cost of the two algorithms, e.g., for K = 50 top-
α K-Means with 4000 and 2000 peers required 35% and 32% of the respective
transfer volume of the Basic Distributed K-Means algorithm to reach 90% qual-
ity. Varying the size of the collection to 25.000, 50.000 and 75.000 documents
did not have significant effects on the clustering quality ratio of the compared
algorithms.

Summarizing, Top-α K-Means easily achieves over 90% of the quality of the
optimal K-Means results with only a fraction of the cost (half of the messages
and 2/5 of the transfer volume of the basic distributed K-Means for 50 clusters).
This result is independent of churn and the number of peers, and the savings
increase with the number of clusters.

5 Conclusions

This paper presents a novel P2P document clustering algorithm based on K-
Means. The algorithm is highly scalable and suitable for text and other high-
dimensional data that follow a Zipf distribution. In contrast to prior algorithms,
its communication costs are not linearly dependent on the number of clusters.
Extensive experiments with up to 100.000 peers show that the algorithm out-
performs the current state-of-the-art P2P clustering algorithm. Top-α K-Means
is highly efficient and achieves nearly the same quality as the original K-Means.

Our future work will focus on a probabilistic model for the algorithm. In
particular, we plan to extend the algorithm such that peers can dynamically
adapt α1, α2, and α3 to keep the clustering approximation error in a given bound.
A prerequisite for such dynamic parameter optimization is a full probabilistic
model. We are already on the way to such a model for our algorithm. The
purpose of this analysis is to enable each peer to autonomously determine the
optimal parameter settings. We are also performing evaluations with different

data sets and other document collections to experimentally validate the broad
applicability of our approach.

References

1. van Rijsbergen, C.J.: Information Retrieval. Buttersworth, London, UK (1989)
second edition.

2. Cutting, D.R., Pedersen, J.O., Karger, D.R., Tukey, J.W.: Scatter/gather: A
cluster-based approach to browsing large document collections. In: SIGIR. (1992)

3. Zamir, O., Etzioni, O., Madani, O., Karp, R.M.: Fast and intuitive clustering of
web documents. In: KDD. (1997)

4. McQueen, J.: Some methods for classification and analysis of multivariate observa-
tions. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability. (1967) 281–297

5. Steinbach, M., Karypis, G., Kumar, V.: A comparison of document clustering
techniques. In: KDD Workshop on Text Mining. (2000)

6. Jin, R., Yang, G., Agrawal, G.: Shared memory parallelization of data mining al-
gorithms: Techniques, programming interface, and performance. TKDE 17 (2005)

7. Baeza-Yates, R.A., Navarro, G.: Block addressing indices for approximate text
retrieval. JASIS 51 (2000) 69–82

8. Blake, C.: A comparison of document, sentence, and term event spaces. In: ACL.
(2006)

9. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scal-
able Peer-To-Peer lookup service for internet applications. In: SIGCOMM. (2001)

10. Zipf, G.K.: Human Behavior and the Principle of Least-Effort. Addison-Wesley,
Cambridge, MA (1949)

11. Crovella, M.E., Taqqu, M.S., Bestavros, A.: Heavy-tailed probability distributions
in the World Wide Web. In: A practical guide to heavy tails: statistical techniques
and applications. Birkhauser Boston Inc. (1998) 3–25

12. Kumar, R., Novak, J., Raghavan, P., Tomkins, A.: On the bursty evolution of
blogspace. In: WWW. (2003)

13. Dhillon, I.S., Modha, D.S.: A data-clustering algorithm on distributed memory
multiprocessors. In: Workshop on Large-Scale Parallel KDD Systems. (1999)

14. Forman, G., Zhang, B.: Distributed data clustering can be efficient and exact.
SIGKDD Explor. Newsl. 2 (2000) 34–38

15. Eisenhardt, M., Müller, W., Henrich, A.: Classifying documents by distributed
P2P clustering. In: INFORMATIK, Frankfurt, Germany (2003) 286–291

16. Hsiao, H.C., King, C.T.: Similarity discovery in structured P2P overlays. In: ICPP.
(2003)

17. Hammouda, K., Kamel, M.: HP2PC:scalable hierarchically-distributed peer-to-
peer clustering. In: SDM. (2007)

18. Datta, S., Giannella, C., Kargupta, H.: K-means clustering over a large, dynamic
network. In: SDM. (2006)

19. Bender, M., Michel, S., Triantafillou, P., Weikum, G.: Global document frequency
estimation in peer-to-peer web search. In: WebDB. (2006)

20. Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: Rcv1: A new benchmark collection for
text categorization research. J. Mach. Learn. Res. 5 (2004) 361–397

