Efficient Semantic-Aware Detection
of Near Duplicate Resources

Ekaterini Ioannou, Odysseas Papapetrou,
Dimitrios Skoutas, and Wolfgang Nejdl

L3S Research Center/Leibniz Universitat Hannover
{ioannou,papapetrou,skoutas,nejdl}@L3S.de

Abstract. Efficiently detecting near duplicate resources is an impor-
tant task when integrating information from various sources and appli-
cations. Once detected, near duplicate resources can be grouped together,
merged, or removed, in order to avoid repetition and redundancy, and
to increase the diversity in the information provided to the user. In this
paper, we introduce an approach for efficient semantic-aware near du-
plicate detection, by combining an indexing scheme for similarity search
with the RDF representations of the resources. We provide a probabilistic
analysis for the correctness of the suggested approach, which allows ap-
plications to configure it for satisfying their specific quality requirements.
Our experimental evaluation on the RDF descriptions of real-world news
articles from various news agencies demonstrates the efficiency and ef-
fectiveness of our approach.

Key words: near duplicate detection, data integration

1 Introduction

A plethora of current applications in the Semantic and Social Web integrate data
from various sources, such as from the local file system, from other applications,
and from the Web. In this open environment, information is often spread across
multiple sources, with the different pieces being overlapping, complementary, or
even contradictory. Consequently, a lot of research efforts have focused on data
integration and data aggregation from various sources, and especially for data
from the Web. A specific problem that arises in this direction is the detection of
near duplicate information coming from different sources or from the same source
in different points in time. This is a crucial task when searching for information,
so that resources, such as Web pages, documents, images, and videos, that have
been identified as near duplicates can be grouped together, merged, or removed,
in order to avoid repetition and redundancy in the results.

As a typical example, consider a news aggregation service which monitors
and aggregates articles from a large number of news agencies. Near duplicates
naturally occur in this scenario, since many of these agencies are expected to
have articles reporting on the same news stories, which involve the same people,

Intelupgrades Atom chip platform Netbooks to get smaller,

PUblished: Dec. 21, 2009 2t 3152 Pt
faster and cheaper 0=
SANTA CLARA, Calif., Dec. 21 (UPI| - LIS, * En
ricrochip maker Intel said Monday its nest _
— ® :
generation Atormn chip platform would make its - Y Intel plans to shrink nethooks even

further with its latest range of Atom
processors, which feature built in
graphics as well as a smaller, more
energy efficient design.

debut in netbooks and laptops in January 2010, ﬁ_

The latest improvements create a platform
with increased energy efficiency with
"integrated graphics capabilities and an

* Previously codenamed Pine Trail,
the new Atom processar is primarily
designed for use in nethooks and =
entry—level desktop PCs. It is now

Cwsm - officially Intel's smallest chip.

on-board memory controller," eWeek reported
Maonday.

The Atom chip has been an integral
component in netbooks, which have ..

Fig. 1. Two near duplicate news articles. The underlined text shows the identi-
fied entities that are described in RDF data of each news article.

events, and locations. Moreover, news agencies often update their articles or re-
publish articles that were published somewhere else, possibly with slight changes.
For instance, national news agencies often republish articles which were origi-
nally published by a commercial newspaper, and vice versa. In most cases, this
republishing also introduces small changes in the news articles, for instance a
comment that this article is a republishing, correction of spelling mistakes, an
additional image, or some new information. The goal of the news aggregation
service is to present to the users a unified view of the articles of all news agencies.
To achieve this, it needs to detect the near duplicate news articles and to handle
them accordingly, for example by filtering them out or grouping them together.
Detecting near duplicate resources requires computing their similarity and
selecting those that have a similarity higher than a specified threshold (typically
defined by the application based on its goals). Hence, there are two main issues
to be addressed: (a) how to compute the similarity between a pair of resources,
and (b) given that near duplicate detection is a task that often needs to be
performed online, how to efficiently identify resources that are similar enough to
qualify as near duplicates, without performing all the pairwise comparisons.
Regarding the first issue (i.e., similarity of two resources), comparing two
resources based only on their content may not be sufficient. For instance, two
Web pages or two news articles in the aforementioned example written by dif-
ferent authors with different writing styles, may not have a very high similarity
when compared using a bag of words representation, while they may still refer
to the same entities and qualify as near duplicates (see Figure 1). However, in
the Semantic Web, resources are annotated with metadata in the form of RDF
statements. Such annotations can be made manually or (semi-)automatically us-
ing tools for natural language processing and information extraction, such as the
Calais Web Service [18] or metadata extractors [16], which identify and extract
from unstructured text entities, facts, relationships, and events, and provides
them in the RDF format. This structured and semantically rich information can

be exploited to more accurately identify near duplicate resources. Existing ap-
proaches that deal with the problem of efficiency in similarity search, e.g., [2, 10,
15], do not operate on structured data (see Section 5).

Our goal is to perform semantic-aware and efficient detection of near du-
plicate resources by combining indexing schemes for similarity search with the
RDF representations of the resources. More specifically, our main contributions
are as follows:

1. We introduce RDFsim, an efficient algorithm for detecting near duplicate
RDF resources. In contrast to existing text-based techniques, our approach
is able to more effectively identify near duplicate resources, using their RDF
representations, and by considering not only the literals but also the struc-
ture of the RDF statements.

2. We provide a probabilistic analysis for the correctness of the algorithm, show-
ing also how RDFsim is configured to satisfy the given quality requirements.

3. We describe an online system that we have implemented in order to test and
illustrate our method for near duplicate detection on a large and continuously
updated collection of news articles.

4. We experimentally evaluate the efficiency and effectiveness of our approach,
using a real-world data set composed of RDF data extracted from recent
news articles from various news agencies.

The rest of the paper is organized as follows. Section 2 introduces and ex-
plains the representation of resources and the indexing structure of RDFsim.
Section 3 explains the process of querying for near duplicate resources, and dis-
cusses configuration of the RDFsim parameters. Section 4 presents an online
system that applies our approach to detect near duplicate news articles, and
reports the results of our experimental evaluation. Finally, Section 5 presents
and discusses related work, and Section 6 provides conclusions and future work.

2 Representing and Indexing Resources

2.1 Overview

A resource in the Semantic Web is described by a set of RDF triples of the
form (subject, predicate, object), where subject is a URI identifying a resource,
predicate is a URI representing a property of the resource, and object represents
the value of this property, which can be either a literal or a URI identifying
another resource. These triples form a graph, where the nodes correspond to
subjects and objects, and the edges correspond to predicates. When a node is
not identified by a URI (i.e., blank nodes), we use the node id information that is
provided. Hence, each resource is represented by an RDF graph R, constructed
from the RDF triples which describe this resource.

Let R be the set of all available resources, and sim : R x R — [0,1] a function
computing the similarity between two resources, based on their RDF graphs. We
define near duplicate resources as follows.

Definition 1. Given two resource descriptions Ry and R, a similarity func-
tion sim, and a similarity threshold minSim, then these two resources are near
duplicates if sim(R1, Re) > minSim. [|

Given a potentially large set of resources R, the problem we focus on is to
efficiently identify all pairs of near duplicate resources in R. A straightforward
solution to this problem is to first perform a pairwise comparison between all
the resources, and then to select those pairs having similarity above the given
threshold. However, this is not scalable with respect to the number of resources,
and hence not suitable for performing this task under time restrictions (e.g.,
online processing), or when the set of resources R is dynamic.

To address this problem efficiently, we need to avoid the pairwise compar-
isons of resources. For this purpose, we propose a method that relies on Locality
Sensitive Hashing (LSH) [10]. First, each resource is converted into the inter-
nal representation used by RDFsim, which is then indexed in an index structure
based on LSH. This index structure allows us to efficiently detect the near dupli-
cates of a given resource, with probabilistic guarantees. The rest of this section
deals with the representation and indexing of resources, while the process of
finding the near duplicates of a given resource is described in Section 3.

2.2 Resource Representation

As explained in Section 1, our method emphasizes on semantic-aware detection
of near duplicate resources, i.e., it operates on the RDF representation of the
resources. As this information is often not available a priori, a pre-processing
step may be required to extract semantic information for the resources. There
are several tools that can be used for this purpose, such as the Calais Web
Service [18] (see Section 4.2 for more details). Subsequently, ontology mapping
methods can be applied to handle the cases where different vocabularies are used
by different sources. In addition, some metadata may be deliberately filtered out
by the application, as they may not be relevant to the task of near duplicate
detection. For example, in the case of the news aggregation scenario, an article
identifier assigned to the article by the particular agency publishing it should
not be taken into consideration when searching for near duplicate articles.

Once the RDF graph describing the resource has been constructed, it needs
to be transformed to a representation that is suitable for indexing in an index
based on LSH, while preserving the semantic information for the resource. For
this purpose, RDFsim applies a transformation of the RDF graph of each re-
source R, as follows: each RDF triple is represented as a concatenation of the
predicate and the object. In the case that the object is a literal, then the pred-
icate is concatenated with the literal. In the case that the object is itself the
subject of another RDF triple, e.g., Ry, then the predicate is concatenated with
the representation rep(R,) of R,, which is generated recursively. During this
recursive generation, cycles are detected and broken. This process is illustrated
by the following example.

c:hasClity

United States ‘

Obama ‘

cthasCountr

*hasLocation

Wn c:hasNam

chasSurname
(#P)

c:has... cthasOccupatio

President ‘

Fig. 2. Representation of resources takes into consideration the semantic structure.

Ezxample 1. Consider the RDF graph shown in Figure 2. The representation of
the nodes L and P are the following:

rep(L) = {“c:hasCity, Washington”, “c:hasCountry, United States” }

rep(P) = {“c:hasName, Barack”, “c:hasSurname, Obama”,
“c:hasOccupation, President” }

Then, the representation of the resource R is generated recursively using the
representations of the resources under R (e.g., L and P) as follows:

rep(R) = {“c:hasLocation, L”, “c:hasPerson, P”, ...} Urep(L) U rep(P)

Notice that some resources may have large and complex RDF graphs (e.g.,
large documents), leading to very lengthy representations. However, this does not
constitute a problem since these representations do not need to be maintained
in main memory. Instead, the representation of each resource is only computed
and used once, as an intermediate step for the purpose of hashing it in the index
structure.

Along with the resource representation, our algorithm also needs a similarity
method (see Definition 1) that is used for computing the similarity between two
RDF representations. For the purpose of this work we apply one of the standard
similarity measures, Jaccard coefficient. However, RDFsim and the underlying
LSH index can incorporate other measures, and there have already been analytic
results which enable LSH on different distance measures [6], for example for the
cosine similarity.

2.3 Indexing Structure

The index used by RDF'sim is based on the Locality Sensitive Hashing (LSH)
approach of [10]. The main idea behind LSH is to hash points from a high
dimensional space using a hash function h such that, with high probability,

| .
@ News Article ’—»C"&etadata E}y}(("gractg

(_ Representation)« Filter/Mappings)
rep(R={t1, 2, ...}

Y
= | h1,1 (o] - [h ﬁ.‘ hi2 lhez| . |hiz] = hi, L hoy| o i
: ° :
E ‘mln)‘mln()‘ ‘mln .)‘ E ‘min(.)‘min(.)‘ ‘min(.)‘ ...E ‘min(.)‘min(.)’ ‘min(.)‘
> ¥ ‘ Y
Mo Mo MO ElMo (MO [Mo MO MO [. MO |
m ‘ m T [an] T
Y Y
0o 1 0 .. 17 1 0 .. 17 0 O
Labels (rep(R)) Labels (rep(R)) Label/(rep(R))

Fig. 3. An illustration of the process followed for generating the labels of RDF re-
sources, which are used for inserting these resources into the indexing structure.

nearby points have similar hash values, while dissimilar points have significantly
different hash values, i.e., for a distance function D(-,-), distance thresholds
(r1,72), and probability thresholds (pri, pra):

— if D(p,q) < r1, then Prh(p) = h(q)] > pr1
— if D(p,q) > ra, then Prlh(p) = h(q)] < pr2

More specifically, we use an indexing structure Z that consists of [binary
trees, denoted with 771,75, ..., 7;. To each tree, we bind k£ hash functions, ran-
domly selected from a family of locality sensitive hash functions H. We denote
the hash functions bound to tree 7; as h1, hay, ..., hi.

Figure 3 shows the process we follow for indexing resources. When a new
resource R, arrives, first its representation rep(R,) is computed as described
above. Recall that rep(R,) consists of a set of terms (i.e., the elements of the set
rep(Rz)). We compute [labels of length k. Each label corresponds to a binary
tree. RDFsim computes the label of rep(R,) for each tree 7; as follows:

— It hashes all the terms in rep(R,) using each hash function h; ;(-) that is
attached to the binary tree 7;.

— It detects the minimum hash value produced by h; ;(-) over all terms in
rep(R;), denoted as min(h; ;(-)).

— It maps min(h; ;(-)) to a bit 0 or 1 with consistent mapping M — [0,1].
This resulting bit is used as the i’th bit of the label of rep(R,).

The same map M is used for all the binary trees. Any mapping function can be
used, for example mod 2, as long as it returns 0 and 1 with equal probability.

(?*/ - \7(1 Insert Ry: Label(rep(R+)) =.0001
‘/7 \ N ’ *\
\/7< a Pt Lookup R;: Prefix(Label(rep(Rz))) = 111
0/ \1 . 0 >1 " ?)
Y Y N
NN A, e
0000 0001 110 1111

Fig. 4. Inserting and searching for resources in a tree of RDFsim.

After computing the [labels of a resource, the algorithm inserts the re-
source in the inverted index. Let Label;(rep(R;)) denote the binary label com-
puted from R, for the binary tree 7;. Then, R, is inserted in the tree using
Label;(rep(R,)) as its path. For example, if Label;(rep(R;)) = 0001, then R, is
inserted at the node with the specific path in tree 7; (see Figure 4).

3 Querying for Near Duplicate Resources

Executing a query for near duplicate resources is similar to the process described
above for indexing a resource. Let R, denote the resource for which we want to
search for near duplicates, and minSim the minimum similarity between the
query R, and another resource R, € R for considering the two resources as near
duplicates. Our method provides a trade-off between performance and recall,
expressed by the minimum probability minProb that each near duplicate of R,
is found.

First, we create the labels for the query Label; (rep(R,)), Labela(rep(Ry)),. . .,
Label;(rep(R,)), which correspond to each of the [trees T, T2, ..., 7.

Assume now that we are interested only for ezact matches of Ry, i.e., exact
duplicates. Then, the query would be executed by performing a lookup of each
label in the corresponding tree, selecting the resources indexed in the identified
nodes, and examining whether each of these resource is an exact duplicate of
R,. Notice that due to the hashing and mapping functions employed during the
indexing process, several resources may be indexed under the same node, hence
the last step in the aforementioned process is required to filter out false positives.

Since in our case we are interested in finding the near duplicates of R,
we need to relax the selection criterion in order to retrieve resources that are
not exact matches but highly similar to R,. Recall that due to the property
of Locality Sensitive Hashing, similar resources are indexed at nearby nodes in
the tree with high probability. Hence, the selection criterion can be relaxed by
performing a lookup not for the entire label but only for a prefix of it, of length
k'. The question that arises is how to determine the appropriate value for %'
Setting a high value for &’ leads to a stricter selection, and hence some near

duplicates may be missed. On the other hand, a low value for k' retrieves a
large result set, from which false positives need to be identified and filtered out,
thus reducing the performance of query execution. For example, in the extreme
case where kK’ = 1, half of the resources from each tree are retrieved, leading to
a very large result set. Consequently, &’ should be set to the maximum value
that still allows for near duplicate resources to be detected with probability
equal or higher than the requested minProb. Once k' has been determined, we
retrieve from each tree the resources with the same prefix to the respective label
of Ry, which results in the set of candidate near duplicates for R,, denoted by
N Deand(Ry). Then, for each resource in N Dcand(Ry), we compute its similarity
to Ry, filtering out those resources having similarity lower than minSim. In the
following, we provide an analysis on how to determine the right value for %'.

The appropriate value k' of the prefix length to be used for the lookup dur-
ing query execution is determined by the values of minProb and minSim. We
assume that the index comprises [binary trees, and labels of total length k
(k' < k). The computation is based on the following theorem.

Theorem 1. Let sim(P, Q) denote the Jaccard similarity of two resources P, @,
based on their respective representations rep(P) and rep(Q). The corresponding
labels Label;(rep(P)) and Label;(rep(Q)), i = 1...1, of the two resources are

, E
equal with probability Pr[Label;(rep(P)) = Label;(rep(Q))] = (%ﬂp@) .
Furthermore, the probability that the two resources have at least one common

. B\ !
zabeusl(1(1+sm;mcz>>)

Proof. As explained in Section 2.3, each bit in the label is computed by (a)

hashing all terms of the representation using a hash function from a family of

LSH functions H, (b) getting the minimum hash value over all terms, and (c)

mapping it to binary. Let min(h; j(rep(P))) denote the minimum value of the

hash function h; ; over all the terms of rep(P), and M(min(h; j(rep(P)))) the

result of the mapping function. The labels Label;(rep(P)) and Label;(rep(Q))

of the two resources P and) will have the same corresponding bit ¢ if either of

the following holds:

(a) min(hi j(rep(P))) = min(hi ;(rep(Q))) or

(b) min(hi (rep(P))) # min(hy 3(rep(@))) and M(min(hi ;(rep(P)))) =
M(min(h; (rep(Q))).

The probability of (a) is directly related to the similarity of the two representa-

tions [5], and precisely,

Primin(hi j(rep(P))) = min(hi ;(rep(Q)))] = sim(rep(P), rep(Q)) (1)

The probability of (b) equals to

(1 = Prlmin(h; ;(rep(P))) = min(hi ;(rep(Q)))]) /2

Since the two cases are mutually exclusive, the probability that either (a) or (b)
is true is the sum of the two probabilities, and equals to %(P’Q).
For two resources to have the same label ¢, then all bits 1,2, ...,k of the two
labels must be equal. The probabilities are independent, therefore:
. k
1+ sim(P,Q)
— (2)

Pr[Label;(rep(P)) = Label;(rep(Q))] = (5

Then, the probability that the two resources have at least one common label
is:

Pr[3i : Label;(rep(P)) = Label;(rep(Q))] = 1 — Pr[—3i : Label;(rep(P)) = Label;(rep(Q))]

_1<1<1+sm§<m>)k>l .

Following directly from Equation 3, we can compute the value of k" as:

" Tog(2) — log(1 + minSim) (4)

W \‘ log (1 —(1— minProb)l/l)J

The number of trees | comprising the index and the length k& of each label
are set during the initialization of RDFsim. Higher values of [allow RDFsim
to also use longer prefixes of length &’ for querying, which results to fewer false
positives, and consequently to lower cost for retrieving the candidate near dupli-
cate resources and comparing them to the query. However, as [increases, there
is an extra cost imposed for maintaining the additional trees. For tuning these
parameters [and k, one needs to have some knowledge regarding the queries
and the distribution of the resources to be indexed. If this information is not
available, one can choose values that are large enough to support a wide range of
queries, while still having a good performance. For our experiments, we experi-
mented with different combinations of [and k, and we observed that an index
with [= 20 and k& = 50 enabled RDF'sim to answer queries efficiently, for prob-
abilistic guarantees as high as 98% and minimum similarity as low as 0.8. By
further increasing [and k one can enable stricter probabilistic guarantees and
lower similarity thresholds, albeit with a higher cost for maintaining the index.

4 Prototype and Evaluation

In this section, we describe a prototype implementation that uses RDFsim to
identify near duplicate news articles. We then report the results of our experi-
mental evaluation using the news articles collected by our prototype application.

4.1 Prototype Implementation

To test our approach on a real-world scenario, we consider a news aggregation
service, which aims at providing a unified view over the articles published on
the Web by various news agencies, identifying and grouping together all near
duplicate articles. In particular, we have implemented a prototype in Java 1.6
that uses RDFsim to index the RDF representations extracted from incoming
news articles and to detect near duplicates, as described in Sections 2 and 3.
The application is accessible online, at the following URL: http://out.13s.
uni-hannover.de:8898/rdfsim/.

The application operates on a large collection of RDF data extracted from
real-world news articles. In particular, we crawl news articles from the Google
News Web site, which links to articles from various news agencies, such as BBC,
Reuters, and CNN. For each newly added news article, we use the OpenClalais
Web service [18] to extract the RDF statements describing the information avail-
able in it'. OpenCalais analyzes the text of the news articles and identifies enti-
ties described in this text, such as people, locations, organizations, and events,
providing an RDF representation of the information in the article.

For the implementation of the binary trees required for indexing the RDF
representations of the articles, there are two alternatives that can be used: (a)
a main memory binary tree implementation, or (b) an implementation on sec-
ondary storage, e.g. a relational database. An efficient main memory implemen-
tation of binary trees has been presented in [2] for solving the approximate
k-nearest neighbor problem. The binary trees are represented as PATRICIA
tries [17], which reduces the amount of required memory by replacing long paths
in the tree with a single node representing these paths. This compression tech-
nique makes the number of tree nodes linear to the number of resources stored
in it. In our case, since there are [trees, the total memory requirements will
be O(n x l), where n is the number of indexed resources. However, although
accessing the main memory is much faster compared to secondary storage, this
approach is limited by the capacity of main memory, and hence it is not suitable
for a large number of RDF resources.

Hence, in our implementation, we have used a relational database, in par-
ticular MySQL 5, to efficiently store and retrieve all the resources with a given
label. The resources are stored in a relational table Z as tuples of the form
(resource_id, tree_id, hash_value). RDFsim needs to find all labels that share
the same prefix of length k' with the query, where &’ < k. This can be efficiently
executed in a relational database using SQL operators, e.g., the LI K FE operator
in MySQL. Hence, all the resources with prefix v from the tree ¢ can be retrieved
using the following expression:

'/Tresource,id(o'tree,idzt and hash_value LIKE /v%/(I))
The size of the database is O(n x 1), where n is the number of resources, and
the complexity of querying is O(log(n)) per tree, i.e.,O(l x log(n)) in total.

! The RDF schema for the Web service output is available at:

http://www.opencalais.com/documentation/calais-web-service-api

Recall

- M

0.97

0.96 T T T T
0.80 0.82 0.84 086 088 090 092 094 096 0.98
Required probability minProb

Fig. 5. Probabilistic guarantees vs. recall.

Upon receiving a keyword query, the application identifies the news articles
containing these keywords. Then, for each of the found news articles, it retrieves
its near duplicates. Based on the near duplicates, it groups the news articles and
it returns these groups as the answer to the query. In addition, for each group,
we also generate a data cloud that summarizes the entities found in these news
articles, taking into consideration the frequency of appearance of these entities
in the articles.

4.2 Experimental Evaluation

The purpose of the experiments was to evaluate RDFsim with respect to quality
and efficiency, for executing queries for near duplicate resources. Efficiency was
measured as the average time required to execute each query, and quality was
measured with recall, i.e., the number of near duplicates detected, divided by
the number of total near duplicates in the repository. Note that precision is
always 1, since RDFsim includes a filtering step that filters out false positives,
as described in Section 3. All the experiments were executed on a server using 1
Gb RAM and one Intel Xeon 2.8GHz processor.

As testbed, we have used the prototype described in Section 4.1. The data
set consisted of 94.829 news articles, with a total of 2.711.217 entities, described
as RDF statements, and it was stored in a MySQL 5 database, residing at the
same machine. The data set is available for download at the following URL:
http://out.13s.uni-hannover.de:8898/rdfsim/data.html.

We indexed all the news articles using 20 binary trees (I = 20), and labels of
length 50 (k = 50). The ground truth for the experiments was constructed by
applying an exhaustive search to detect all pairs of articles that have pairwise
similarity above a threshold minSim. With Q[minSim], we denote the set of
resources that have at least one near duplicate for the threshold minSim. For
each article in Q[minSim], we detected the near duplicate articles. All queries
were repeated for different required probabilistic guarantees, expressed as the
minimum probability minProb that each near duplicate article with the query
will be returned, with minProb € [0.8,0.98].

[minSim/minProb [0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 096 0.98

0.8 24 23 23 22 21 21 20 19 18 16
0.9 49 48 47 46 44 43 41 39 37 33

Table 1. Values of k' for different combinations of similarity and probability.

Figure 5 plots the average recall for the queries, for minSim = 0.8 and
minSim = 0.9. As expected, recall increases with the required probability
minProb. This is due to the fact that when minProb increases, RDFsim chooses
a smaller length &’ for the prefixes of the query labels (see Section 3), and thereby
the query retrieves a larger number of candidates. However, it is not necessary
to set minProb to very high values in order to get high recall; for our dataset,
a value of minProb = 0.9 already results in recall over 0.98, which satisfies the
practical requirements for most applications.

We also note that the recall is always higher than the value of minProb,
which verifies that the probabilistic guarantees of the algorithm, described in
Section 3, are always satisfied. In fact, the difference between the actual recall
and the expected recall (the recall guaranteed by minProb) is notable, especially
for low min Prob values. This happens because minProb controls the probability
that each near duplicate will be retrieved, under the assumption that all near
duplicates have similarity minSim with the query. However, in practice most of
the near duplicates have similarity higher than minSim. Therefore, the individ-
ual probability that these near duplicates are retrieved ends up to be higher than
minProb, and the overall quality of the results is better than the one expected
according to the value of minProb.

With respect to efficiency, Figure 6 shows the average execution time per
query, for varying minProb values. The measured time includes the total time
required to answer the query, i.e., generating the labels for the query, detecting
and retrieving the candidate near duplicates, and comparing all retrieved near
duplicates with the query to filter out the false positives. We see that for all
configurations, the average execution time is small, always below 100 msec per
query. Note that, if exhaustive comparisons are used instead for detecting the
near duplicate resources, the time required is around 1 minute per query.

We also see that the average execution time for the queries in Q[0.9] is always
less than the corresponding time for the queries in Q[0.8]. This is due to the
effect of the similarity threshold minSim on k’: for a higher minSim value,
RDFsim can choose a higher value for &/, thereby avoiding many false positives
and reducing the execution cost significantly. For example, for minProb = 0.8,
RDFsim sets k' to 49 for minSim = 0.9, whereas the corresponding &’ value for
minSim = 0.8 is only 24. Table 1 shows the different combinations of the values
of these parameters.

As expected, the execution time increases as the requested probability minProb
increases. This is also due to the lower &’ value chosen by RDFsim for an-
swering queries with higher minProb values. This effect is more noticeable for
minSim = 0.8, since the lower minSim value causes an additional reduction to

80
70 Q[o.8]
60 -%-Q[0.9]
50
40
30

L =
10
0 ; ; ;

080 082 084 086 088 090 092 094 096 098

Execution time per query (msec)

Required probability minProb

Fig. 6. Probabilistic guarantees vs. average query execution time.

k', and increases the false positives significantly. For minSim = 0.9, the effect of
increasing the probabilistic guarantees minProb is not so noticeable because the
value of k' remains high, i.e., k¥’ > 33, and therefore RDFsim does not retrieve
many false positives. However, even for queries with very high requirements,
e.g., minProb = 0.98 and minSim = 0.8, the execution time is less than 80
msec per query. Summarizing, the experimental results verify the probabilistic
guarantees offered by RDFsim and confirm the effectiveness of the algorithm for
detecting near duplicate resources in large RDF repositories in real-time and for
configurable requirements.

5 Related Work

The problem of data matching and deduplication is a well studied problem ap-
pearing with several variants and in several applications [12]. Traditionally, ap-
proaches that deal with textual data employ a bag-of-words model and rely on
string similarity measures to compare resources [7]. Our work follows a different
approach, which instead aims at leveraging the semantic information that can
be extracted from the the available resources, so that identifying near duplicate
resources can then be performed at the semantic level.

Hence, the approaches that are mostly relevant to our work are the ones that
operate not on unstructured text but on complex objects that also contain rela-
tionships (e.g., RDF statements, graphs). Such approaches are often employed
in Personal Information Management Systems. For example, the Reference Rec-
onciliation [9] algorithm processes the data and identifies near duplicates be-
fore propagating and exchanging information in a complex information space. A
modified version of this algorithm [1] has also been used for detecting conflict
of interests in paper reviewing processes. Probabilistic Entity Linkage [11] con-
structs a bayesian network from the possible duplicates, and it then uses prob-
abilistic inference for computing their similarity. Other approaches introduced
clustering using relationships [3,4], and graph analysis based on the included
relationship [13,14]. In contrast to these approaches, our work focuses on the

efficient processing of the data for identifying near duplicates, by avoiding the
pairwise comparisons between resources.

Locality Sensitive Hashing has also been used for building indexes for simi-
larity search, based on different variants, such as p-stable distributions [8], ran-
dom projection [6], and minwise independent permutations [5]. In this work,
we follow the latter, which is appropriate for the employed similarity measure,
i.e., the Jaccard coefficient, as shown in [10]. Complete indices that incorporate
LSH for nearest neighbor and near duplicate queries have been presented in
LSH Index [10] and LSH Forest [2]. The LSH Index maintains an in-memory
similarity index, which enables queries for k-nearest neighbors and near dupli-
cates. Although very efficient, the LSH Index does not allow the user to choose
a probability and similarity per query; instead, these are pre-determined from
the index configuration. On the other hand, LSH Forest [2] uses index labels of
varying length, similar to RDFsim. Compared to LSH Forest, RDFsim allows
the indexing of RDF data, and derives different probabilistic guarantees, which
apply to near duplicate detection rather than k-nearest neighbor search, which
is the main focus of LSH Forest. In addition, RDF'sim is also built on a relational
database, making it easier to be implemented and integrated in existing systems.

6 Conclusions and Future Work

We have presented a novel approach that efficiently detects near duplicate re-
sources on the Semantic Web. Our approach utilizes the RDF representations of
resources to detect near duplicates taking into consideration the semantics and
structure in the resource descriptions. It also employs an index using LSH in
order to efficiently identify near duplicates, avoiding the need for a large number
of pairwise similarity computations. We provided a probabilistic analysis that
allows to configure the algorithm according to specific quality requirements of
users or applications. In addition, we have implemented a system that illustrates
the benefits of the approach on a real-world scenario regarding the online aggre-
gation of news articles, and we have presented the results of our experimental
evaluation.

Directions for future work include exploiting this efficient, online near dupli-
cate detection method, to improve tasks such as diversification or summarization
of search results.

Acknowledgments
This work is partially supported by the FP7 EU Projects OKKAM (contract
no. 215032) and Living Knowledge (contract no. 231126).

References

1. B. Aleman-Meza, M. Nagarajan, C. Ramakrishnan, L. Ding, P. Kolari, A. P. Sheth,
I. B. Arpinar, A. Joshi, and T. Finin. Semantic analytics on social networks:

10.

11.

12.

13.

14.

15.

16.

17.

18.

experiences in addressing the problem of conflict of interest detection. In WWW,
pages 407-416, 2006.

M. Bawa, T. Condie, and P. Ganesan. LSH forest: self-tuning indexes for similarity
search. In WWW, pages 651-660, 2005.

I. Bhattacharya and L. Getoor. Deduplication and group detection using links. In
Workshop on Link Analysis and Group Detection, ACM SIGKDD, 2004.

I. Bhattacharya and L. Getoor. Iterative record linkage for cleaning and integration.
In DMKD, pages 11-18, 2004.

A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-wise inde-
pendent permutations (extended abstract). In STOC, 1998.

M. S. Charikar. Similarity estimation techniques from rounding algorithms. In
STOC, pages 327-336, 2002.

W. Cohen, P. Ravikumar, and S. Fienberg. A comparison of string distance metrics
for name-matching tasks. In Workshop on Inf. Integration on the Web, 2003.

M. Datar and P. Indyk. Locality-sensitive hashing scheme based on p-stable dis-
tributions. In In SCG 04: Proceedings of the twentieth annual symposium on Com-
putational geometry, pages 253-262. ACM Press, 2004.

X. Dong, A. Y. Halevy, and J. Madhavan. Reference reconciliation in complex
information spaces. In SIGMOD, pages 8596, 2005.

A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via
hashing. In VLDB, pages 432—442, 1999.

E. Ioannou, C. Niederé, and W. Nejdl. Probabilistic entity linkage for heteroge-
neous information spaces. In CAiSE, pages 556-570, 2008.

M. A. Jaro. Advances in record-linkage methodology as applied to matching the
1985 census of tampa. American Statistical Association, 1989.

D. V. Kalashnikov and S. Mehrotra. Domain-independent data cleaning via analy-
sis of entity-relationship graph. ACM Trans. Database Syst., pages 716-767, 2006.
D. V. Kalashnikov, S. Mehrotra, and Z. Chen. Exploiting relationships for domain-
independent data cleaning. In SDM, 2005.

G. S. Manku, A. Jain, and A. D. Sarma. Detecting near-duplicates for web crawling.
In WWW, pages 141-150, 2007.

E. Minack, R. Paiu, S. Costache, G. Demartini, J. Gaugaz, E. Ioannou, P.-A.
Chirita, and W. Nejdl. Leveraging personal metadata for desktop search - the
Beagle++ system. In Journal of Web Semantics, 2010.

D. R. Morrison. PATRICIA - Practical Algorithm To Retrieve Information Coded
in Alphanumeric. J. ACM, 1968.

Open Calais. http://www.opencalais.com/.

